In ultrasound, the following events happen:
In a typical ultrasound, millions of pulses and echoes are sent and received each second. The probe can be moved along the surface of the body and angled to obtain various views.
The Ultrasound Machine
A basic ultrasound machine has the following parts:
Transducer probes come in many shapes and sizes, as shown in the photo above. The shape of the probe determines its field of view, and the frequency of emitted sound waves determines how deep the sound waves penetrate and the resolution of the image. Transducer probes may contain one or more crystal elements; in multiple-element probes, each crystal has its own circuit. Multiple-element probes have the advantage that the ultrasounc beam can be "steered" by changing the timing in which each element gets pulsed; steering the beam is especially important for cardiac ultrasound. In addition to probes that can be moved across the surface of the body, some probes are designed to be inserted through various openings of the body (vagina, rectum, esophagus) so that they can get closer to the organ being examined (uterus, prostate gland, stomach); getting closer to the organ can allow for more detailed views.
- The ultrasound machine transmits high-frequency (1 to 5 megahertz) sound pulses into your body using a probe.
- The sound waves travel into your body and hit a boundary between tissues (e.g. between fluid and soft tissue, soft tissue and bone).
- Some of the sound waves get reflected back to the probe, while some travel on further until they reach another boundary and get reflected.
- The reflected waves are picked up by the probe and relayed to the machine.
- The machine calculates the distance from the probe to the tissue or organ (boundaries) using the speed of sound in tissue (5,005 ft/s or1,540 m/s) and the time of the each echo's return (usually on the order of millionths of a second).
- The machine displays the distances and intensities of the echoes on the screen, forming a two dimensional image like the one shown below.
In a typical ultrasound, millions of pulses and echoes are sent and received each second. The probe can be moved along the surface of the body and angled to obtain various views.
The Ultrasound Machine
A basic ultrasound machine has the following parts:
- Transducer probe - probe that sends and receives the sound waves
- Central processing unit (CPU) - computer that does all of the calculations and contains the electrical power supplies for itself and the transducer probe
- Transducer pulse controls - changes the amplitude, frequency and duration of the pulses emitted from the transducer probe
- Display - displays the image from the ultrasound data processed by the CPU
- Keyboard/cursor - inputs data and takes measurements from the display
- Disk storage device (hard, floppy, CD) - stores the acquired images
- Printer - prints the image from the displayed data
Transducer probes come in many shapes and sizes, as shown in the photo above. The shape of the probe determines its field of view, and the frequency of emitted sound waves determines how deep the sound waves penetrate and the resolution of the image. Transducer probes may contain one or more crystal elements; in multiple-element probes, each crystal has its own circuit. Multiple-element probes have the advantage that the ultrasounc beam can be "steered" by changing the timing in which each element gets pulsed; steering the beam is especially important for cardiac ultrasound. In addition to probes that can be moved across the surface of the body, some probes are designed to be inserted through various openings of the body (vagina, rectum, esophagus) so that they can get closer to the organ being examined (uterus, prostate gland, stomach); getting closer to the organ can allow for more detailed views.
parts of an ultrasound machine
The CPU is the brain of the ultrasound machine. The CPU is basically a computer that contains the microprocessor, memory, amplifiers and power supplies for the microprocessor and transducer probe. The CPU sends electrical currents to the transducer probe to emit sound waves, and also receives the electrical pulses from the probes that were created from the returning echoes. The CPU does all of the calculations involved in processing the data. Once the raw data are processed, the CPU forms the image on the monitor. The CPU can also store the processed data and/or image on disk. The transducer pulse controls allow the operator, called the ultrasonographer, to set and change the frequency and duration of the ultrasound pulses, as well as the scan mode of the machine. The commands from the operator are translated into changing electric currents that are applied to the piezoelectric crystals in the transducer probe.
Different Types of Ultrasound
The ultrasound that we have described so far presents a two-dimensional image, or "slice," of a three-dimensional object (fetus, organ). Two other types of ultrasound are currently in use, 3-D ultrasound imaging and Doppler ultrasound.
In the past several years, ultrasound machines capable of three-dimensional imaging have been developed. In these machines, several two-dimensional images are acquired by moving the probes across the body surface or rotating inserted probes. The two-dimensional scans are then combined by specialized computer software to form 3-D images.
3-D imaging allows you to get a better look at the organ being examined and is best used for:
There have been many concerns about the safety of ultrasound. Because ultrasound is energy, the question becomes "What is this energy doing to my tissues or my baby?" There have been some reports of low birthweight babies being born to mothers who had frequent ultrasound examinations during pregnancy. The two major possibilities with ultrasound are as follows:
Different Types of Ultrasound
In the past several years, ultrasound machines capable of three-dimensional imaging have been developed. In these machines, several two-dimensional images are acquired by moving the probes across the body surface or rotating inserted probes. The two-dimensional scans are then combined by specialized computer software to form 3-D images.
3-D imaging allows you to get a better look at the organ being examined and is best used for:
- Early detection of cancerous and benign tumors
- examining the prostate gland for early detection of tumors
- looking for masses in the colon and rectum
- detecting breast lesions for possible biopsies
- Visualizing a fetus to assess its development, especially for observing abnormal development of the face and limbs
- Visualizing blood flow in various organs or a fetus
Major Uses of Ultrasound
Ultrasound has been used in a variety of clinical settings, including obstetrics and gynecology, cardiology and cancer detection. The main advantage of ultrasound is that certain structures can be observed without using radiation. Ultrasound can also be done much faster than X-rays or other radiographic techniques. Here is a short list of some uses for ultrasound:- Obstetrics and Gynecology
- measuring the size of the fetus to determine the due date
- determining the position of the fetus to see if it is in the normal head down position or breech
- checking the position of the placenta to see if it is improperly developing over the opening to the uterus (cervix)
- seeing the number of fetuses in the uterus
- checking the sex of the baby (if the genital area can be clearly seen)
- checking the fetus's growth rate by making many measurements over time
- detecting ectopic pregnancy, the life-threatening situation in which the baby is implanted in the mother's Fallopian tubes instead of in the uterus
- determining whether there is an appropriate amount of amniotic fluid cushioning the baby
- monitoring the baby during specialized procedures - ultrasound has been helpful in seeing and avoiding the baby during amniocentesis (sampling of the amniotic fluid with a needle for genetic testing). Years ago, doctors use to perform this procedure blindly; however, with accompanying use of ultrasound, the risks of this procedure have dropped dramatically.
- seeing tumors of the ovary and breast
- Cardiology
- seeing the inside of the heart to identify abnormal structures or functions
- measuring blood flow through the heart and major blood vessels
- Urology
- measuring blood flow through the kidney
- seeing kidney stones
- detecting prostate cancer early
There have been many concerns about the safety of ultrasound. Because ultrasound is energy, the question becomes "What is this energy doing to my tissues or my baby?" There have been some reports of low birthweight babies being born to mothers who had frequent ultrasound examinations during pregnancy. The two major possibilities with ultrasound are as follows:
- development of heat -- tissues or water absorb the ultrasound energy which increases their temperature locally
- formation of bubbles (cavitation) -- when dissolved gases come out of solution due to local heat caused by ultrasound
No comments:
Post a Comment