The word Photovoltaic is a combination of the Greek word for Light and the name of the physicist Allesandro Volta. It identifies the direct conversion of sunlight into energy by means of solar cells. The conversion process is based on the photoelectric effect discovered by Alexander Bequerel in 1839. The photoelectric effect describes the release of positive and negative charge carriers in a solid state when light strikes its surface. · How Does a Solar Cell Work?· Characteristics of Solar Cells · Different Cell Types · From the Cell to Module · Natural Limits of Efficiency · New Directions How Does a Solar Cell Work? Solar cells are composed of various semiconducting materials. Semiconductors are materials, which become electrically conductive when supplied with light or heat, but which operate as insulators at low temperatures. Over 95% of all the solar cells produced worldwide are composed of the semiconductor material Silicon (Si). As the second most abundant element in earth`s crust, silicon has the advantage, of being available in sufficient quantities, and additionally processing the material does not burden the environment. To produce a solar cell, the semiconductor is contaminated or "doped". "Doping" is the intentional introduction of chemical elements, with which one can obtain a surplus of either positive charge carriers (p-conducting semiconductor layer) or negative charge carriers (n-conducting semiconductor layer) from the semiconductor material. If two differently contaminated semiconductor layers are combined, then a so-called p-n-junction results on the boundary of the layers. |
model of a crystalline solar cell
The output (product of electricity and voltage) of a solar cell is temperature dependent. Higher cell temperatures lead to lower output, and hence to lower efficiency. The level of efficiency indicates how much of the radiated quantity of light is converted into useable electrical energy. |
In addition to optimizing the production processes, work is also being done to increase the level of efficiency, in order to lower the costs of solar cells. However, different loss mechanisms are setting limits on these plans. Basically, the different semiconductor materials or combinations are suited only for specific spectral ranges. Therefore a specific portion of the radiant energy cannot be used, because the light quanta (photons) do not have enough energy to "activate" the charge carriers. On the other hand, a certain amount of surplus photon energy is transformed into heat rather than into electrical energy. In addition to that, there are optical losses, such as the shadowing of the cell surface through contact with the glass surface or reflection of incoming rays on the cell surface. Other loss mechanisms are electrical resistance losses in the semiconductor and the connecting cable. The disrupting influence of material contamination, surface effects and crystal defects, however, are also significant. Single loss mechanisms (photons with too little energy are not absorbed, surplus photon energy is transformed into heat) cannot be further improved because of inherent physical limits imposed by the materials themselves. This leads to a theoretical maximum level of efficiency, i.e. approximately 28% for crystal silicon. |
New DirectionsSurface structuring to reduce reflection loss: for example, construction of the cell surface in a pyramid structure, so that incoming light hits the surface several times. New material: for example, gallium arsenide (GaAs), cadmium telluride (CdTe) or copper indium selenide (CuInSe²). Tandem or stacked cells: in order to be able to use a wide spectrum of radiation, different semiconductor materials, which are suited for different spectral ranges, will be arranged one on top of the other. Concentrator cells: A higher light intensity will be focussed on the solar cells by the use of mirror and lens systems. This system tracks the sun, always using direct radiation. MIS Inversion Layer cells: the inner electrical field are not produced by a p-n junction, but by the junction of a thin oxide layer to a semiconductor. Grätzel cells: Electrochemical liquid cells with titanium dioxide as electrolytes and dye to improve light absorption. Text and illustrations used with the permission of the German Foundation for Solar Energy (Deutschen Gesellschaft für Sonnenenergie e.V.) Concise and comprehensible explanations of the basic concepts in solar heating and photovoltaics can be found in our Solar-Lexicon. Reports on technology, business and politics, as well as presentations on innovative systems and products can be found in the Solar Magazine |